Designing Sequential Cirucits (Clock Cycle with D Flip Flop)

What is a sequential circuit?

- Similar to combinational circuit in the set up BUT includes a clock cycle
- uses a type of Flip Flop in order to track the clock cycle
- For example a digital clock has a 12 hour cycle, it has a format of 00:00 and it cycles through each minute based on its programmed cycle

What is a D-Flip Flop

- The D in D Flip Flop stands for Delay
- This delay is necessary in a clock cycle because we must have a short delay in between parts in the cycle
- This allows for the clock to move to its next cycle
- For example in a digital clock when the clock goes from 11:00 to 11:01 it has a short delay in order to transition to that next minute

TO GO OVER BASIC SETUP FOR CIRCUITS FIND CIRCUIT GUIDE WORKSHEET

Example

Dcsign a sequential circuir neerg,
D-Flip Flop. The clock cycle is
$\mathrm{OO} \rightarrow \mathrm{OI} \rightarrow \mathrm{IO} \rightarrow \mathrm{II} \rightarrow \mathrm{O}$.

- Here we are told that we are using D-Flip Flop
- We given a cycle of two-bit numbers

Create Truth Table

- When using a clock cycle we must label our inputs with (t)
- Because the clock cycle is in two-bit form, we need two inputs $A(t)$ and $B(t)$
- When using any Flip Flop with a clock cycle you must have ($\mathrm{t}+1$) rows for each input
- In this case we have $\mathrm{A}(\mathrm{t}+1)$ and $\mathrm{B}(\mathrm{t}+1)$
- These ($\mathrm{t}+1$) rows represent the next part of the clock cycle
- D() rows represent the D-Flip Flop rows and we can think of these as our output rows

- Fill in our input rows based on the amount of bits we are using
- In this case, only two bits are needed for the given clock cycle in the prompt so we list out every possible formation of two-bits $(00,01,10,11)$

- Remember ($\mathrm{t}+1$) represents the next part of the cycle
- Our cycle is $00->01->10->11->00$
- So we look at our first case where $A(t)$ and $B(t)$ make up 00
- What comes after 00 in our cycle?.... It is 01
- This means in the first spot for our $A(t+1) B(t+1)$ rows it will be 01
- After 01 is what.... 10
- After 10 is what.... 11
- After 11 is what..... 00

- When dealing with D-Flip Flop specfiically, the D() rows always match what is in the ($t+1$) rows
- As seen in this example it matches

Create K-Maps

- We need a k-map for each output our $D(A)$ and $D(B)$

- Because we are dealing with a two bit we only need a 4 spot k-map
- When $A(t) B(t)$ is $00 D(A)$ is $0 \ldots$ fill in rest (refer to truth table)
- We then get the equation based on where we have 1's in the k-map
- There is a 1 at $01\left(A^{\prime} B\right)$ and a 1 at $10\left(A B^{\prime}\right)$
- Our unsimplified equation is then $A^{\prime} B+A B^{\prime}$
- Cannot group because they are diagonal
- To simplify we keep what the equations have in common... BUT they are two bit and exact opposite from each other so we can simplify to A XOR B
- This means that this equation will be true if A or B is on

- When $\mathrm{A}(\mathrm{t}) \mathrm{B}(\mathrm{t})$ is $00 \mathrm{D}(\mathrm{B})$ is 1 (refer to truth table)
- We get the equation based on where the 1 's are in the k-map
- There is a 1 at $00\left(A^{\prime} B^{\prime}\right)$ and there is a 1 at $10\left(A B^{\prime}\right)$
- Our unsimplified equation is $A^{\prime} B^{\prime} A B^{\prime}$
- We then simplify it by keeping whats in common
- The simplified equation is now B^{\prime}

Draw in Digital Cirucits

- First we need to draw our two inputs of $A(t)$ and $B(t)$
- Because we are dealing with a clock cycle with no switches, we don' t need to add any buttons to our inputs
- Instead connect your input to an LED
- Then lay out your two D-Flip Flops

- Now connect your clock cycle
- This will allow your program to run a contoinuous cycle

- Now connect your equations to the related D-Flip Flops
- For our $D(A)$ our equation was A XOR B so we select an XOR gate
- Connect A and B to the gate
- Connect the gate to the D part of the Flip Flop
- Our Equation for $D(B)$ is B^{\prime}
- Connect a not gate to B to access B'
- Connect B^{\prime} to the D part of the $\mathrm{D}(\mathrm{B})$ flip flop
- Connect the Q of your flip flop to its respective input
- \quad IN this example $D(A)$ is connected to $A(t)$ and $D(B)$ is connected to $B(t)$

ALL DONE

- OPTIONAL

01

- You can select the icon
- This is a binary converter, set to 2 bits and binary
- This will show the cycle in the format of the prompt for better understanding
- When you press play the cycle will run in the cycle shown in the prompt
- 00->01->10->11->00
- If press play and the cycle is going in the same order as the prompt then you did it right
If the cycle is going to fast

- Change to 1 hz this will slow it down

ALL DONE

