California State University
SAN MARCOS

CS 231

T-Flip Flop / D-Flip Flop with a Switch

Why use a switch with Flip Flops?

- Without a switch, we can only work with one clock cycle
- A switch allows us to run different clock cycles depending on if the switch is on or off
- For example when the switch is off the cycle can go 00->01->10->11->00 but we can make the cycle change to $00->11->10->01->00$ if the switch is on

FOR BASICS ON FILLING OUT TRUTH TABLES FIND D OR T FLIP FLOP XS

Example

- Setup is the same but we need an additional column for our switch

- Even though x is a switch, it is still an input
- This means that our three input slots include $\mathrm{x}, \mathrm{A}(\mathrm{t}), \mathrm{B}(\mathrm{t})$

California State University
SAN MARCOS

- This calls for a 3 bit formation, therefore we fill out every possible 3 bit formation

- Then we fill out the $(t+1)$ rows based on the x values
- Remember the cycle changes based on when $x=0$ or $x=1$
- When $x=0$ cycle: $00->01->10->11->00$
- When $x=1$ cycle: $00->10->01->11->00$

Creating K-Maps with A Switch

- Because we have 3 inputs we set up a 3 input k-map
- Because the right half of the setup is $\mathrm{A}(\mathrm{t}) \mathrm{B}(\mathrm{t})$ we need a two bit formation for this side
- This is why we have $00,01,11,10$ instead of just 0 and 1
- $00,01,11,10$ is always the order when making a k -map with 3 or more inputs
- We keep it 0 and 1 on the left side because there is only one input of x

- Group and keep whats common

- Group and keep whats in common

California State University
SAN MARCOS

Digital Works

- Set up your switch and set up your A and B
- Also make sure to include the necessary gates based on your equation from the k-maps
- Lay out your two d-flip flops
- Because we are using three letter equations, use right click or control click on the gates to change the inputs for necessary connections

California State University
SAN MARCOS


```
| - ||| - A < < | | Parts Centre
```


- Make your connections based on equation
- Then connect your equations to or gates and to their respective flip flops
- Connect the q of your flip flop to their input of a and b
- Connect your clock cycles to the clock part of each flip flop
- Connect a binary converter to show cycle
- RUN THE PROGRAM WITH IWTCH ON AND OFF
- Make sure cycle is correct for when $\mathrm{x}=0$ and $\mathrm{x}=1$, remember they should be different refer to prompt

