

CS 231 T-Flip Flop / D-Flip Flop with a Switch

Why use a switch with Flip Flops?

- Without a switch, we can only work with one clock cycle
- A switch allows us to run different clock cycles depending on if the switch is on or off
- For example when the switch is off the cycle can go 00->01->10->11->00 but we can make the cycle change to 00->11->10->01 if the switch is on

FOR BASICS ON FILLING OUT TRUTH TABLES FIND D OR T FLIP FLOP WS

Example

Setup is the same but we need an additional column for our switch

- Even though x is a switch, it is still an input
- This means that our three input slots include x,A(t), B(t)

• This calls for a 3 bit formation, therefore we fill out every possible 3 bit formation

• Then we fill out the (t+1) rows based on the x values

Remember the cycle changes based on when x=0 or x=1

• When x=0 cycle: 00->01->10->11->00

• When x=1 cycle: 00->10->01->11->00

Creating K-Maps with A Switch

- Because we have 3 inputs we set up a 3 input k-map
- Because the right half of the setup is A(t) B(t) we need a two bit formation for this side
- This is why we have 00,01,11,10 instead of just 0 and 1
- 00,01,11,10 is always the order when making a k-map with 3 or more inputs
- We keep it 0 and 1 on the left side because there is only one input of x

• Group and keep whats common

Group and keep whats in common

Digital Works

- Set up your switch and set up your A and B
- Also make sure to include the necessary gates based on your equation from the k-maps
- Lay out your two d-flip flops
- Because we are using three letter equations, use right click or control click on the gates to change the inputs for necessary connections

- Make your connections based on equation
- Then connect your equations to or gates and to their respective flip flops
- Connect the q of your flip flop to their input of a and b
- Connect your clock cycles to the clock part of each flip flop
- Connect a binary converter to show cycle
- RUN THE PROGRAM WITH IWTCH ON AND OFF
- Make sure cycle is correct for when x=0 and x=1, remember they should be different refer to prompt