- $4-1=$
 California State University
 Math 264

1 Systems of Linear Equations to Matrices

Suppose we have the following system of equations:

$$
\begin{aligned}
& x-y+2 z=5 \\
& 2 x-2 y+4 z=10 \\
& 3 x-3 y+6 z=15
\end{aligned}
$$

We can translate the system into an augmented matrix. The following abbreviation can denote an augmented matrix.
$\left[\begin{array}{cccc}a_{1} x & b_{1} y & c_{1} z & d_{1} \\ a_{2} x & b_{2} y & c_{2} z & d_{2} \\ a_{3} x & b_{3} y & c_{3} z & d_{3} \\ a_{n} x & b_{n} y & c_{n} z & d_{m}\end{array}\right]$

1. Identify coefficients ($\mathrm{a}, \mathrm{b}, \mathrm{c}$).
$a_{1}=1, b_{1}=-1, c_{1}=2$
$a_{2}=2, b_{2}=-2, c_{1}=4$
$a_{3}=3, b_{1}=-3, c_{1}=6$
2. Identify variables ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
$x=$?
$y=$?
$z=$?
3. Identify constants (d).
$d_{1}=5$
$d_{2}=10$
$d_{3}=15$
4. Construct an augmented matrix from what we have identified.
$\left[\begin{array}{cccc}1 & -1 & 2 & 5 \\ 2 & -2 & 4 & 10 \\ 3 & -3 & 6 & 15\end{array}\right]$

2 Row Echelon \& Reduced Row Echelon Form

An $\mathrm{m} \times \mathrm{n}$ matrix is in row echelon form if

1. Any row consisting of zeros is at the bottom.
2. In each non-zero row, the first non-zero entry (leading entry) is in the column to the left of any leading entries below it.
For example, the following matrix is in row echelon form:

$$
\left[\begin{array}{llll}
1 & a & b & c \\
0 & 1 & d & e \\
0 & 0 & 1 & f
\end{array}\right]
$$

An $m \times n$ matrix is in reduced row echelon form if

1. It is in row echelon form
2. The leading entry in each non-zero row is 1 (leading 1).
3. Each column containing a leading 1 has zeros everywhere else.

For example, the following matrix is in reduced row echelon form:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 0 & c
\end{array}\right]
$$

3 Elementary Row Operations

1. Interchange two rows.

$$
\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & k & l & m
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
e & f & g & h \\
a & b & c & d \\
i & k & l & m
\end{array}\right] \quad R_{1} \Longleftrightarrow R_{2}
$$

2. Multiply a row by a non-zero constant.

$$
\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & k & l & m
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 a & 2 b & 2 c & 2 d \\
e & f & g & h \\
i & k & l & m
\end{array}\right] \quad 2 R_{1}
$$

3. Add a multiple of a row by to another row.

$$
\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & k & l & m
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i-2 a & k-2 b & l-2 c & m-2 d
\end{array}\right] \quad R_{3}-2 R_{1}
$$

4 Gaussian \& Gauss-Jordan Elimination

Gaussian \& Gauss-Jordan Elimination are row reduction algorithms that solve for a system of linear equations. In simplest terms:
Gaussian Elimination:

1. Convert the matrix to row echelon form (Elementary Row Operations).
2. Perform back substitution.
3. Find the solution set.

Gauss-Jordan Elimination:

1. Convert the matrix to reduced row echelon form. (Elementary Row Operations).
2. Find the solution set.

Types of Solutions:

1. Unique Solution (Consistent).
$\left[\begin{array}{llll}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right] \rightarrow\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
2. No Solution (Inconsistent).
$\left[\begin{array}{llll}0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right] \rightarrow 0 \neq 3$
3. Infinite Solutions (Consistent).

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

5 Formulas

Norm of a vector: $\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$
Unit Vector: $\frac{1}{\|v\|} v$
Dot Product: $u \cdot v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}$
Distance between two vectors: $d(u, v)=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\ldots+\left(u_{n}-v_{n}\right)^{2}}$
Angle between two vectors: $\quad \cos (\theta)=\frac{u \cdot v}{\|u\|\|v\|}$
Projections: $\operatorname{proj}_{u}(v)=\left(\frac{u \cdot v}{\|v\|^{2}}\right) v$
Distance between a Point and a Plane: $\quad D=\frac{|a x+b y+c z+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$
Inverse of 2×2 Matrix: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Inverse of m x n Matrix: $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]^{-1}=\left[\begin{array}{llllll}a & b & c & 1 & 0 & 0 \\ d & e & f & 0 & 1 & 0 \\ g & h & i & 0 & 0 & 1\end{array}\right]$ rref \rightarrow

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & j & k & l \\
0 & 1 & 0 & m & n & o \\
0 & 0 & 1 & p & q & r
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
j & k & l \\
m & n & o \\
p & q & r
\end{array}\right]
$$

Determinant of 2×2 Matrix: $\operatorname{det}\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$

Determinant of m x n Matrix: $\operatorname{det}\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=a \cdot \operatorname{det}\left|\begin{array}{ll}e & f \\ h & i\end{array}\right|-b \cdot \operatorname{det}\left|\begin{array}{ll}d & f \\ g & i\end{array}\right|+$ $c \cdot \operatorname{det}\left|\begin{array}{ll}d & e \\ g & h\end{array}\right|$
Rotation Matrix: $\quad R_{\theta}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
Transpose Matrix: $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]^{T} \rightarrow\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right]$

