## Ther <br> California State University <br> Math 100 <br> SAN MARCOS

## 1 RSA Encryption

1. Pick two prime numbers, $p$ and $q$.
2. Find the product of these two prime numbers, $n=p q$ where $n$ is a public number.
3. Find $m=(p-1)(q-1)$
4. Pick a number $e$ that has no common factors with $m$ where $e$ is another public number.
5. Pick a number $W$ that must be less than $n$ that we want to encrypt.

6 . To encode a message $W$, calculate $C=W^{e} \bmod n$, where $C$ is the encrypted message.

## 2 RSA Decryption

1. Suppose we have an encoded message C.
2. Keep note of our public numbers $n$ and $e$, and private numbers $p, q$, and $m$.
3. Use the values of $e$ and $m$ to find the natural numbers $d$ and $m$ such that $e d=1+m y$, where $d$ is the decoding power and is private.
4. Compute $W=C^{d} \bmod n$, which will give us back our original message.

## 3 Example

Encrypting the original message:

1. Let $p=3$ and $q=5$.
2. $n=p q \rightarrow n=(3)(5) \rightarrow n=15$.
3. $m=(p-1)(q-1) \rightarrow m=(3-1)(5-1) \rightarrow m=(2)(4) \rightarrow m=8$.
4. Let $e=3,3$ is not a common factor of 8 .
5. Let $W=7$.
6. $C=W^{e} \bmod n \rightarrow C=7^{3} \bmod 15 \rightarrow C=343 \bmod 15 \rightarrow C=13$.

Decrypting the encrypted message:

1. $C=13$ from out previous calculation.
2. We know $n=15, e=3, p=3, q=5$, and $m=8$.
3. ed $=1+m y \rightarrow 3 d=1+8 y$. Let $d=3$ and $y=1$. $(3)(3)=1+(8)(1) \rightarrow$ $9=9$.
4. $W=C^{d} \bmod 15 \rightarrow W=13^{3} \bmod 15 \rightarrow W=2197 \bmod 15 \rightarrow W=7$

Note that when encrypting a message we get an encrypted message. Decrypting the encrypted message should give us our original message and is a good way to check if your encryption is correct.

