

Difference Quotient Handout

Definition: The difference quotient is a formula that is used in later calculus/math courses. Its formula is:

$$\frac{f(x+h)-f(x)}{h}$$

Procedure: To solve the difference quotient,

- 1) Determine f(x) from what is given from the problem and determine f(x + h) by replacing all x in f(x) with x + h.
- 2) Simplify the numerator f(x + h) f(x) (Don't forget to distribute the negative into f(x)!)
- 3) Factor out an h from the numerator and cancel the h in the denominator for your answer.

Examples:

Determine $\frac{f(x+h)-f(x)}{h}$ if f(x)=x+2.

1) Determine f(x) from what is given from the problem and determine f(x + h) by replacing all x in f(x) with x + h.

Our f(x) = x + 2 from what we are given. To determine f(x + h), we replace the x in x + 2 with x + h, giving us (x + h) + 2. Plugging into $\frac{f(x+h)-f(x)}{h}$ gives us $\frac{(x+h)+2-(x+2)}{h}$.

2) Simplify the numerator f(x + h) - f(x) (Don't forget to distribute the negative into f(x)!)

We will simplify the numerator, namely (x + h) + 2 - (x + 2). We can drop the parentheses around x + h since it is not being distributed by anything. Distributing the negative to x + 2 gives us x - 2. In summary, we have:

$$(x + h) + 2 - (x + 2)$$

 $x + h + 2 - (x + 2)$
 $x + h + 2 - x - 2$
 $x + h + 2 - x - 2$

Cancelling out the like terms leave us with h in the numerator.

3) Factor out an *h* from the numerator and cancel the *h* in the denominator for your answer.

Overall, we are left with $\frac{h}{h}$ since we originally had an h in the denominator as well. We can divide h by h, leaving us with 1 as our final answer. In other words, $\frac{h}{h}=1$.

If
$$f(x) = x^2 - 4$$
, find $\frac{f(x+h) - f(x)}{h}$.

1) Determine f(x) from what is given from the problem and determine f(x + h) by replacing all x in f(x) with x + h.

Our $f(x) = x^2 - 4$ from what we are given, so our $f(x+h) = (x+h)^2 - 4$ from replacing the x in $x^2 - 4$ with x + h. Plugging into $\frac{f(x+h)-f(x)}{h}$ gives us $\frac{(x+h)^2-4-(x^2-4)}{h}$.

2) Simplify the numerator f(x + h) - f(x) (Don't forget to distribute the negative into f(x)!)

We will simplify the numerator, namely $(x+h)^2 - 4 - (x^2 - 4)$. First, we will need to expand $(x+h)^2$ and use the FOIL method:

$$(x + h)^2 = (x + h)(x + h) = x^2 + 2hx + h^2$$

This gives us $x^2 + 2hx + h^2 - 4 - (x^2 - 4)$. Now, we will need to distribute the negative into $x^2 - 4$:

$$x^2 + 2hx + h^2 - 4 - x^2 + 4$$

Next, we cancel out the like terms:

$$\frac{x^{2}}{x^{2}} + 2hx + h^{2} - 4 - \frac{x^{2}}{x^{2}} + 4$$
$$2hx + h^{2}$$

3) Factor out an h from the numerator and cancel the h in the denominator for your answer.

Overall, we are left with $\frac{2hx+h^2}{h}$ since we originally had an h in the denominator as well. We can factor our an h from $2hx+h^2$, giving us $\frac{h(2x+h)}{h}$. Finally, we will cancel out h, leaving us with our final answer of (2x+h).