STEM Success Center

Difference Quotient Handout

Definition: The difference quotient is a formula that is used in later calculus/math courses. Its formula is:

$$
\frac{f(x+h)-f(x)}{h}
$$

Procedure: To solve the difference quotient,

1) Determine $f(x)$ from what is given from the problem and determine $f(x+h)$ by replacing all x in $f(x)$ with $x+h$.
2) Simplify the numerator $f(x+h)-f(x)$ (Don't forget to distribute the negative into $f(x)$!)
3) Factor out an h from the numerator and cancel the h in the denominator for your answer.

Examples:

Determine $\frac{f(x+h)-f(x)}{h}$ if $f(x)=x+2$.

1) Determine $f(x)$ from what is given from the problem and determine $f(x+h)$ by replacing all x in $f(x)$ with $x+h$.

Our $f(x)=x+2$ from what we are given. To determine $f(x+h)$, we replace the x in $x+2$ with $x+h$, giving us $(x+h)+2$. Plugging into $\frac{f(x+h)-f(x)}{h}$ gives us $\frac{(x+h)+2-(x+2)}{h}$.
2) Simplify the numerator $f(x+h)-f(x)$ (Don't forget to distribute the negative into $f(x)$!)

We will simplify the numerator, namely $(x+h)+2-(x+2)$. We can drop the parentheses around $x+h$ since it is not being distributed by anything. Distributing the negative to $x+2$ gives us $x-2$. In summary, we have:

$$
\begin{gathered}
(x+h)+2-(x+2) \\
x+h+2-(x+2) \\
x+h+2-x-2 \\
x+h+z-x-z
\end{gathered}
$$

Cancelling out the like terms leave us with h in the numerator.
3) Factor out an h from the numerator and cancel the h in the denominator for your answer.

Overall, we are left with $\frac{h}{h}$ since we originally had an h in the denominator as well. We can divide h by h, leaving us with 1 as our final answer. In other words, $\frac{h}{h}=1$.

If $f(x)=x^{2}-4$, find $\frac{f(x+h)-f(x)}{h}$.

1) Determine $f(x)$ from what is given from the problem and determine $f(x+h)$ by replacing all x in $f(x)$ with $x+h$.

Our $f(x)=x^{2}-4$ from what we are given, so our $f(x+h)=(x+h)^{2}-4$ from replacing the x in $x^{2}-4$ with $x+h$. Plugging into $\frac{f(x+h)-f(x)}{h}$ gives us $\frac{(x+h)^{2}-4-\left(x^{2}-4\right)}{h}$.
2) Simplify the numerator $f(x+h)-f(x)$ (Don't forget to distribute the negative into $f(x)$!)

We will simplify the numerator, namely $(x+h)^{2}-4-\left(x^{2}-4\right)$. First, we will need to expand $(x+h)^{2}$ and use the FOIL method:

$$
(x+h)^{2}=(x+h)(x+h)=x^{2}+2 h x+h^{2}
$$

This gives us $x^{2}+2 h x+h^{2}-4-\left(x^{2}-4\right)$. Now, we will need to distribute the negative into $x^{2}-4$:

$$
x^{2}+2 h x+h^{2}-4-x^{2}+4
$$

Next, we cancel out the like terms:

$$
\begin{gathered}
x^{z}+2 h x+h^{2}-4-x^{z}+4 \\
2 h x+h^{2}
\end{gathered}
$$

3) Factor out an h from the numerator and cancel the h in the denominator for your answer.

Overall, we are left with $\frac{2 h x+h^{2}}{h}$ since we originally had an h in the denominator as well. We can factor our an h from $2 h x+h^{2}$, giving us $\frac{h(2 x+h)}{h}$. Finally, we will cancel out h, leaving us with our final answer of $(2 x+h)$.

