Math 270 \& 350
 California State University SAN MARCOS

1 Logical Statements

Negation (Not):
If p is a statement variable, the negation of p is "not p " and is denoted $\sim p$. It has opposite truth value from p : if p is true, $\sim p$ is false; if p is false, $\sim p$ is true.

Conjunction (And):
If p and q are statement variables, the conjunction of p and q is " p and q ", denoted $p \wedge q$. It is true when, and only when, both p and q are true. If either p or q is false, or if both false, $p \wedge q$ is false.

Disjunction (Or):
If p and q are statement variables, the disjunction of p and q is "p or q ", denoted $p \vee q$. It is true when either p is true, or q is true, or both p and q are true; it is false only when both p and q are false.

Logical Equivalence:
Two statement forms are called logically equivalent \Longleftrightarrow they have identical truth values for each possible substitution of statements for their statement variables. The logical equivalence of statement forms P and Q is denoted by writing $P \equiv Q$. Two statements are called logically equivalent \Longleftrightarrow, they have logically equivalent forms when identical component statement variables are used to replace identical component statements.

De Morgan's Laws:
The negation of an and statement is logically equivalent to the or statement in which each component is negated.

$$
\sim(p \wedge q) \equiv \sim p \vee \sim q
$$

The negation of an or statement is logically equivalent to the and statement in which each component is negated.

$$
\sim(p \vee q) \equiv \sim p \wedge \sim q
$$

Contradiction Statements:
A contradiction is a statement form that is always false regardless of the truth values of the individual statements substituted for its statement variables. A statement whose form is a contradiction is a contradictory statement.

Conditional Statements:
If p and q are statement variables, the conditional of q by p is "If p then q " or " p implies q " and is denoted $p \Longrightarrow q$. It is false when p is true and q is false; otherwise, it is true. We call p the hypothesis (or antecedent) of the conditional and q the conclusion (or consequent).

Negation of Conditional Statements:
The negation of "if p then q " is logically equivalent to " p and not q ".
Contrapositive of Conditional Statements:
The contrapositive of a conditional statement of the form "If p then q " is "If $\sim q$ then $\sim p$ ". Symbolically of $p \Longrightarrow q$ is $\sim q \Longrightarrow \sim p$.

Converse \& Inverse of Conditional Statements:
Suppose a conditional statement of the form "If p then q " is given.

1. The converse is "If q then p ".
2. The inverse is "If $\sim p$ then $\sim q$ ".

Symbolically:

1. The converse of $p \Longrightarrow q$ is $q \Longrightarrow p$.

Note that: $p \Longrightarrow q$ is not the same as $q \Longrightarrow p$.
2. The inverse of $p \Longrightarrow q$ is $\sim p \Longrightarrow \sim q$

Biconditional Statements:
Given statement variables p and q, the biconditional of p and q is " p if, and only if, q " and is denoted $p \Longleftrightarrow q$. It is true if both p and q have the same truth values and is false if p and q have opposite truth values. The words if and only if are sometimes abbreviated iff.

2 Order of Operations for Logical Operators

1. Evaluate Negations first (\sim).
2. Evaluate \wedge and \vee second. When both are present, parentheses may be needed.
3. Evaluate \Longrightarrow and \Longleftrightarrow third. When both are present, parentheses may be needed.

p	$\sim p$
T	F
F	T

Table 1: Negation Truth Table (Not)

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Table 2: Conjunction Truth Table (And)

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Table 3: Disconjunction Truth Table (Or)

p	q	$p \Longrightarrow$	q
T	T	T	
T	F	F	
F	T	T	
F	F	T	

Table 4: Conditional Truth Table (Implies)

$$
\begin{array}{c|c|cc}
p & q & p & \Longleftrightarrow \\
\mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T}
\end{array}
$$

Table 5: Biconditional Truth Table (Iff)

