## Math 132 Local Extrema Worksheet

For all problems, find the critical values, determine the local extrema, and state whether the local extrema is a minimum or maximum.

1) $y=2 x^{2}-8 x+4$
2) $y=4 x^{2}+15 x+7$
3) $y=\frac{1}{3} x^{3}+3 x^{2}+8 x+3$
4) $y=2 x^{3}+7 x^{2}+4 x+5$

STEM Success Center

## Solutions:

1) Find the derivative and set it equal to 0 for the critical values:

$$
\begin{gathered}
y^{\prime}=4 x-8=0 \\
x=2
\end{gathered}
$$

2 is your critical value, so use a number less than 2 and a number greater than 2 as test points and plug those test points into $y^{\prime}$. We will use 0 and 3:

| 0 | 2 | 3 |
| :--- | :--- | :--- |
|  | Critical Value |  |

We plug 0 and 3 into $y^{\prime}$ :

$$
\begin{gathered}
4(0)-8=-8 \\
4(3)-8=4
\end{gathered}
$$

When $x=0$, we get a negative number. When $x=3$, we get a positive number. It turns out that any number you plug in that is less than 2 will also be negative, and any number you plug in that is greater than 2 will also be positive. Since the equation we are plugging into represents the derivative, the x -values before 2 will cause the graph of $y$ to decrease, and the x -values after 2 will cause the graph of $y$ to increase. We will update our table to reflect this:

| 0 | 2 | 3 |
| :--- | :--- | :--- |
| - | Critical Value | + |

We can now picture what will happen with this information. Since the graph of $y$ decreases up to 2 and then increases after 2 , we can imagine that the point at $x=2$ will be a local minimum. Lastly, we will plug 2 into $y$ to find the local minimum:

$$
y=2(2)^{2}-8(2)+4=-4
$$

Therefore, we will have a local minimum at $(2,-4)$.
2) Find the derivative and set it equal to 0 for the critical values:

$$
\begin{gathered}
y^{\prime}=8 x+15=0 \\
x=-\frac{15}{8}
\end{gathered}
$$

STEM Success Center
$-\frac{15}{8}$ is your critical value, so use a number less than $-\frac{15}{8}$ and a number greater than $-\frac{15}{8}$ as test points and plug those test points into $y^{\prime}$. We will use -2 and 0 :

| -2 | $-15 / 8$ | 0 |
| :--- | :--- | :--- |
|  | Critical Value |  |

We plug -2 and 0 into $y^{\prime}$ :

$$
\begin{gathered}
8(-2)+15=-1 \\
8(0)+15=15
\end{gathered}
$$

When $x=-2$, we get a negative number. When $x=0$, we get a positive number. It turns out that any number you plug in that is less than $-\frac{15}{8}$ will also be negative, and any number you plug in that is greater than $-\frac{15}{8}$ will also be positive. Since the equation we are plugging into represents the derivative, the x -values before $-\frac{15}{8}$ will cause the graph of $y$ to decrease, and the x -values after $-\frac{15}{8}$ will cause the graph of $y$ to increase. We will update our table to reflect this:

| -2 | $-15 / 8$ | 0 |
| :--- | :--- | :--- |
| - | Critical Value | + |

We can now picture what will happen with this information. Since the graph of $y$ decreases up to $-\frac{15}{8}$ and then increases after $-\frac{15}{8}$, we can imagine that the point at $x=-\frac{15}{8}$ will be a local minimum. Lastly, we will plug $-15 / 8$ into $y$ to find the local minimum:

$$
4\left(-\frac{15}{8}\right)^{2}+15\left(-\frac{15}{8}\right)+7=-\frac{113}{16}
$$

Therefore, we will have a local minimum at $\left(-\frac{15}{8},-\frac{113}{6}\right)$
3) Find the derivative and set it equal to 0 for the critical values:

$$
\begin{gathered}
y^{\prime}=x^{2}+6 x+8=0 \\
(x+4)(x+2)=0 \\
x=-4,-2
\end{gathered}
$$

STEM Success Center
-4 and -2 are your critical values, so use a number less than -4 , a number between -4 and -2 , and a number greater than -2 as test points and plug those test points into $y^{\prime}$. We will use $-5,-3$, and 0 :

| -5 | -4 | -3 | -2 | 0 |
| :--- | :--- | :--- | :--- | :--- |
|  | Critical Value |  | Critical Value |  |

We plug $-5,-3$, and 0 into $y^{\prime}$ :

$$
\begin{gathered}
y^{\prime}=(-5+4)(-5+2)=3 \\
y^{\prime}=(-3+4)(-3+2)=-1 \\
y^{\prime}=(0+4)(0+2)=8
\end{gathered}
$$

When $x=-5$, we get a positive number. When $x=-3$, we get a negative number. When $x=0$, we get another positive. It turns out that any number you plug in that is less than -4 will also be positive, any number you plug in that is between than -4 and -2 will be negative, and any number you plug in that is greater than -2 will be positive. Since the equation we are plugging into represents the derivative, the $x$-values before -4 will cause the graph of $y$ to increase, the $x$ value between -4 and -2 will cause the graph of $y$ to decrease, and the $x$-values after -2 will cause the graph of $y$ to decrease. We will update our table to reflect this:

| -5 | -4 | -3 | -2 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| + | Critical Value | - | Critical Value | + |

We can now picture what will happen with this information. Since the graph of $y$ increases up to $x=-4$ and then decreases after $x=-4$, we can imagine that the point at $x=-4$ will be a local maximum. Then, the graph of $y$ continues to decrease up to $x=-2$ and then increases again after. So, we can imagine the point at $x=-2$ to be a local minimum. Lastly, we will plug -2 into $y$ to find the local minimum, and -4 into $y$ to find the local maximum:

$$
\begin{gathered}
y=\frac{1}{3}(-2)^{3}+3(-2)^{2}+8(-2)+3=-\frac{11}{3} \\
y=\frac{1}{3}(-4)^{3}+3(-4)^{2}+8(-4)+3=-\frac{7}{3}
\end{gathered}
$$

So, we have a local minimum at $\left(-2,-\frac{11}{3}\right)$ and a local maximum at $\left(-4,-\frac{7}{3}\right)$.
4) Find the derivative and set it equal to 0 for the critical values:

$$
y^{\prime}=6 x^{2}+14 x+4=0
$$

We will factor using the A-C Method. We will label 6 as $a, 14$ as $b$, and 4 as $c$. We know $a * c=$ $6 * 4=24$ and $b=14$.

STEM Success Center

We need two numbers that multiply to 10 and add to 14 . These two numbers are 2 and 12 . So, we will rearrange our equation accordingly:

$$
\begin{gathered}
y^{\prime}=6 x^{2}+14 x+4=0 \\
y^{\prime}=6 x^{2}+12 x+2 x+4=0 \\
y^{\prime}=6 x(x+2)+2(x+2)=0 \\
y^{\prime}=(6 x+2)(x+2)=0
\end{gathered}
$$

Now we can find our critical values by setting each factor equal to zero:

$$
\begin{gathered}
6 x+2=0 \\
x=-\frac{1}{3} \\
x+2=0 \\
x=-2
\end{gathered}
$$

So, our critical values will be at $x=-\frac{1}{3}$ and $x=-2$, so use a number less than -2 , a number between -2 and $-1 / 3$, and a number greater than $-1 / 3$ as test points and plug those test points into $y^{\prime}$. We will use $-3,-1$, and 0 :

$$
\begin{gathered}
y^{\prime}=(6(-3)+2)((-3)+2)=16 \\
y^{\prime}=(6(-1)+2)((-1)+2)=-4 \\
y^{\prime}=(6(0)+2)((0)+2)=4
\end{gathered}
$$

When $x=-3$, we get a positive number. When $x=-1$, we get a negative number. When $x=0$, we get another positive. It turns out that any number you plug in that is less than -2 will also be positive, any number you plug in that is between than -2 and $-\frac{1}{3}$ will be negative, and any number you plug in that is greater than $-\frac{1}{3}$ will be positive. Since the equation we are plugging into represents the derivative, the x -values before -2 will cause the graph of $y$ to increase, the x -values between -2 and $-\frac{1}{3}$ will cause the graph of $y$ to decrease, and the x -values after $-\frac{1}{3}$ will cause the graph of $y$ to increase. We will create a table to reflect this:

| -3 | -2 | -1 | $-1 / 3$ | 0 |
| :--- | :--- | :--- | :--- | :--- |
| + | Critical Value | - | Critical Value | + |

STEM Success Center

We can now picture what will happen with this information. Since the graph of $y$ increases up to $x=-2$ and then decreases after $x=-2$, we can imagine that the point at $x=-2$ will be a local maximum. Then, the graph of $y$ continues to decrease up to $x=-\frac{1}{3}$ and then increases again after. So, we can imagine the point at $x=-\frac{1}{3}$ to be a local minimum. Lastly, we will plug $-1 / 3$ into $y$ to find the local minimum, and -2 into $y$ to find the local maximum:

$$
\begin{gathered}
y=2\left(-\frac{1}{3}\right)^{3}+7\left(-\frac{1}{3}\right)^{2}+4\left(-\frac{1}{3}\right)+5=\frac{118}{27} \\
y=2(-2)^{3}+7(-2)^{2}+4(-2)+5=9
\end{gathered}
$$

So, we have a local minimum at $\left(-\frac{1}{3}, \frac{118}{27}\right)$ and a local maximum at $(-2,9)$.

