Difference in Means and Standard Deviation

1. Researchers tested to see if people who exercise regularly sleep better than people who don't. They took a random sample of adults and surveyed their exercise routine and sleep duration. Calculate the difference between the two means. (One Tailed Test)

	Exercise:	No Exercise:	
Mean $\left(\bar{X}_{1}\right)$	85 h	82 h	$\left(\bar{X}_{2}\right)$
Standard Deviation $\left(s_{1}\right)$	6	8	$\left(s_{2}\right)$
Number $\left(N_{1}\right)$	22	50	$\left(N_{2}\right)$

2. In order to compare the means of two populations, independent samples were observed. Test the difference in means between the two.

Sample 1: $N_{1}=21 \quad \bar{x}_{1}=27.6 \quad s_{1}^{2}=20.25$
Sample 2: $N_{2}=11 \quad \bar{x}_{2}=21.5 \quad s_{2}^{2}=30.25$
3. Calculate the difference of the means in the samples given.

Sample 1: $\bar{X}=30.17 \quad \mathrm{~N}=9 \quad \mathrm{~s}=16.09$

Sample 2: $\bar{X}=53.71 \quad \mathrm{~N}=8 \quad \mathrm{~s}=10.36$
4. A survey was taken to see if there was a difference between boys and girls and the number of absences they receive. Calculate the difference in means.
Boys: N=6
$\bar{X}=5.83$
$s=2.38$
Girls: $\mathrm{N}=6$
$\bar{X}=8.17$
$\mathrm{s}=1.32$
5. You grow 20 crystals from a solution and measure the length of each crystal. Calculate the sample standard deviation.
6. Four friends were comparing their scores on their exam. Calculate the standard deviation. (Population)
$6,2,3,1$
7. Find the standard deviation for the series of numbers:
$2,3,6,8,11$
8. Find the standard deviation of the set of numbers:

10, 15, 7, 13

STEM Success Center

Difference in Means and Standard Deviation

1. Researchers tested to see if people who exercise regularly sleep better than people who don't. They took a random sample of adults and surveyed their exercise routine and sleep duration. Calculate the difference between the two means. (One Tailed Test)

	Exercise:	No Exercise:	
Mean $\left(\bar{X}_{1}\right)$	85 h	82 h	$\left(\bar{X}_{2}\right)$
Standard Deviation $\left(s_{1}\right)$	6	8	$\left(s_{2}\right)$
Number $\left(N_{1}\right)$	22	50	$\left(N_{2}\right)$

Steps 1 and 2 are provided, so move on to step 3 find the standard error
$s \overline{x_{1}}-\bar{x}_{2}=\left(\frac{N_{1} s_{1}^{2}+N_{2} s_{2}^{2}}{N_{1}+N_{2}-2}\right)\left(\frac{N_{1}+N_{2}}{N_{1} N_{2}}\right)$
$\left(\frac{(22)(36)+(50)(64)}{22+50-2}\right)\left(\frac{22+50}{(22)(50)}\right)$
$\left(\frac{3992}{70}\right)\left(\frac{72}{1100}\right)$
(57.0285)(0.0654)
$s \overline{x_{1}}-\bar{x}_{2}=3.73$

Step 4 calculate the t value $t=\frac{\overline{x_{1}}-\overline{x_{2}}}{s \overline{x_{1}}-\overline{x_{2}}}$
$\mathrm{t}=\frac{85-82}{3.73}$
$\mathrm{t}=0.80$

Step 5 find the critical t value $\mathrm{df}=N_{1}+N_{2}-2$
$22+50-2$
$=70$
Do you accept or reject the null hypothesis based on the critical t ?
2. In order to compare the means of two populations, independent samples were observed. Test the difference of means between the two.

Sample 1: $N_{1}=21$	$\bar{x}_{1}=27.6$	$s_{1}^{2}=20.25$
Sample 2: $N_{2}=11$	$\bar{x}_{2}=21.5$	$s_{2}^{2}=30.25$

Step 3 find the standard error

$\left(\frac{(21)(20.25)+(11)(30.25)}{21+11-2}\right)\left(\frac{21+11}{(21)(11)}\right)$
$\left(\frac{758}{30}\right)\left(\frac{32}{231}\right)$
$=1.807$
Step 4 calculate the \mathbf{t} value
$\frac{27.6-21.5}{1.807}$
$=3.375$
Step 5 find the critical t value
21+11-2
$=30$
Do you accept or reject based on the critical t?
3. Calculate the difference of the means in the samples given.

Sample 1: $\bar{X}=30.17$	$\mathrm{~N}=9$	$\mathrm{~s}=16.09$
Sample 2: $\bar{X}=53.71$	$\mathrm{~N}=8$	$\mathrm{~s}=10.36$

Step 3
$\left(\frac{(9)(258.8881)+(8)(107.3296)}{9+8-2}\right)\left(\frac{9+8}{(9)(8)}\right)$
(155.33286)(0.2361)
$\sqrt{36.6758}$
$=6.665$
Step 4
$\frac{30.17-53.71}{6.665}$
$=-3.53$

Step 5

$9+8-2=15$
Do you accept or reject based on critical t?
4. A survey was taken to see if there was a difference between boys and girls and the number of absences they receive. Calculate the difference of means.

Boys: $\mathrm{N}=6$	$\bar{X}=5.83$	$\mathrm{~s}=2.38$
Girls: $\mathrm{N}=6$	$\bar{X}=8.17$	$\mathrm{~s}=1.32$

Step 3

$\left(\frac{(6)(5.6644)+(6)(1.7424)}{6+6-2}\right)\left(\frac{6+6}{(6)(6)}\right)$
$\left(\frac{44.4408}{10}\right)\left(\frac{12}{36}\right)$
$=1.48$
Step 4
$\frac{5.83-8.17}{1.48}$
$=-1.58$

Step 5

$6+6-2=10$
Do you accept or reject based on critical t?
5. You grow 20 crystals from a solution and measure the length of each crystal. Calculate the sample standard deviation.

$$
9,2,5,4,12,7,8,11,9,3,7,4,12,5,4,10,9,6,9,4
$$

Step 1 find the mean

140/20
$=7$
Step 2 find the square of the distance from the mean for each value ($x-\mu$)
$(9-7)^{2}=(2)^{2}=4$
$(2-7)^{2}=(-5)^{2}=25$
$(5-7)^{2}=(-2)^{2}=4$
$(4-7)^{2}=(-3)^{2}=9$
And so on.
Step 3 find the mean of those values

$$
\begin{gathered}
\frac{178}{20-1} \\
=9.368
\end{gathered}
$$

Step 4 take the square root of the sum
$\sqrt{9.368}$
$=3.0607$
The standard deviation of the sample is 3.0607
6. Four friends were comparing their scores on their exam. Calculate the standard deviation. (Population)
$6,2,3,1$

Step 1 find the mean

$$
\begin{aligned}
& \frac{6+2+3+1}{4} \\
& =3
\end{aligned}
$$

STEM Success Center
Step $2(x-\mu)$
$(6-3)=\left(3^{2}\right)=9$
$(2-3)=(-1)^{2}=1$
$(3-3)=(0)^{2}=0$
$(1-3)=\left(-2^{2}\right)=4$
Step 3 find the mean
$\frac{9+1+0+4}{4}$
$\frac{14}{4}$
$=3.5$
Step 4 take the square root of the sum
$\sqrt{3.5}$
$=1.87$
The standard deviation is 1.87
7. Find the standard deviation for the series of numbers: $2,3,6,8,11$

Step 1
$\frac{2+3+6+8+11}{5}$
$=6$
Step 2
$(2-6)=-4^{2}=-16$
$(3-6)=-3^{2}=-9$
$(6-6)=0^{2}=0$
$(8-6)=2^{2}=4$
$(11-6)=5^{2}=25$

Step 3

$$
\begin{aligned}
& \frac{-16+-9+0+4+25}{5-1} \\
& =1
\end{aligned}
$$

Step 4
$\sqrt{1}$
$=1$
The standard deviation is 1
8. Find the standard deviation of the set of numbers: $10,15,7,13$

Step 1

$\frac{10+15+7+13}{4}$
$=11.25$

Step 2

$(10-11.25)=-1.25^{2}=-1.5625$
$(15-11.25)=3.75^{2}=10.725$
$(7-11.25)=-4.25^{2}=-18.0625$
$(13-11.25)=1.75^{2}=3.0625$

Step 3

$\frac{36.74}{4}$
$=9.19$

Step 4
$\sqrt{9.19}$
$=3.03$
The standard deviation is 3.03

